Q	uestio	n Answer	Marks	Part Marks and	l Guidance
1	(a)	Correct sketch	1	Straight line crossing +ve x – axis and –ve y – axis	Condone freehand
	(b)	$\frac{1}{2}$ oe	2	Or M1 for evidence of numerical attempt at 'rise/run' Or SC1 for 2	eg can be implied by $-\frac{1}{2}$
	(c)	$y = \frac{1}{2}x + 6$	2	Or M1 for $\frac{1}{2}x + 6$, or $y = mx + 6$ or $y = \frac{1}{2}x + c$	Any <i>m</i> except 0, any <i>c</i> (inc 0)
	(d)	Not parallel as $m \neq \frac{1}{2}$ Not perpendicular as $m \neq -2$ Neither	M1 M1 A1	Allow gradient not the same Allow not negative reciprocal	

2			y = 6x - 5 oe isw	2	B1 for $y = ax - 5$ or $y = 6x \pm b$ or $6x - 5$	Any a or b (incl. 0)
---	--	--	-------------------	---	--	----------------------

3	(a)	$y = x - 5$, $y = -3x + 5$, $y = \frac{1}{2}x + 5$	3	B1 for each one	
	(b)	$y = -\frac{1}{2}x + 3$	2	B1 for $y = -\frac{1}{2}x + c$ or $y = mx + 3$	

4	(a)	4	1	Not 4x	Allow 4/1
	(b)	(0, ⁻ 5) cao	1		
	(c)	y = 4x	2	B1 for $4x$, $y = mx$ (any $m \neq 0$), $y = 4x + c$ (any $c \neq 0$)	Condone $y = 4x + 0$ for 2 marks And $y = mx + 0$ for 1 mark
	(d)	$-\frac{1}{5} \times 4 \neq -1$	1	Or gradient should be $-\frac{1}{4}$ Not –ve reciprocal etc	Soi 'Inverse' does not mean 'reciprocal'

5	(a)	15	2	M1 for $m = \frac{145 - 70}{8 - 3}$ or better	Ignore units
	(b)	<i>J</i> = 15 <i>t</i> + 25 oe	3	B1FT for (<i>their</i> 15)<i>t</i>M1 for method to find constant term	Condone other variables used instead of <i>t</i>
				Or SC2 for (<i>their</i> 15) <i>t</i> + 25 or <i>y</i> = 15 <i>x</i> + 25 Or SC1 for <i>mt</i> + 25	Ignore units

6	(a)	Ruled line of best fit	1	Within tramlines, any length Allow not passing through (0, 0)	Overlay available If extended must stay within tramlines
	(b)	Answer in range 10-14	2	M1 for (vertical change) / (horizontal change) soi or for correct gradient but wrong form	Can be implied from a triangle drawn on line of best fit or from any 2 points eg 12 <i>x</i> etc
	(C)	(Average) Price (per Satsuma)	1	eg They cost 11p	Allow costs in range 10-14 or FT 0 for a description of correlation
	(d)	y = (their 12)x + their c oe	2	B1 for <i>y</i> = (<i>their</i> 12) <i>x</i> + any <i>c</i>	Allow correct or FT Tolerance ±2 for <i>c</i> (look at extension if line does not cross <i>y</i> -axis)

7	(a)	Ruled line drawn	1		Overlay available
	(b)	$-\frac{2}{3}$	2FT	B1 for $-\frac{8}{12}$ or $-\frac{4}{6}$ (and other correct unsimplified forms eg $-\frac{1}{1.5}$) or $\frac{2}{3}$ or -0.66 (or better) or $-\frac{2}{3}x$ isw	If wrong points plotted allow correct or FT for 2 provided non integer, otherwise max 1
	(C)	$y = -\frac{2}{3}x + 8$	2FT	<i>their m</i> and <i>c</i> B1 for $y = mx + 8$ or $y = -\frac{2}{3}x + c$ or $-\frac{2}{3}x + 8$ or $y = -\frac{2}{3} + 8$	Allow correct or FT Any <i>m</i> or <i>c</i> including 0 eg B1 for $y = mx + 12$ if (0, 12) plotted
	(d)	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5 isw	1FT	– 1/(their m)	Allow other forms if correct eg $\frac{-3}{-2}$ etc 0 for $\frac{3}{2}x$ etc

8	(a)	Correct plots and ruled line between w = 50 and w = 260	3	 B2 for all 5 points correct or B1 for any 2 points correct and B1 for a ruled line through at least 4 correct points 	accuracy: the centre of their cross, dot or top of their stick should lie within the 'circle' on the overlay
	(b)	9.9 to 10.1	1	or FT <i>their</i> straight line	
	(c)	0.02 oe	2	M1 for an attempt at $\frac{\Delta L}{\Delta W}$ from <i>their</i> graph	equivalents include $\frac{1}{50}$ and 2% and isw any attempt to simplify their answer
	(d)	L = (their 0.02)W + (their 10)	1		
	(e)	No data for weights that big	1	Spring might snap, equation may be invalid for large values of <i>W</i> or limit to the length, etc	

9	(a)		(1, 4.5)	2	B1 for each coordinate	
	(b)	(i)	58	2	M1 for $t^2 = 9$ or $6t^2 = 54$	
		(ii)	$[t=][\pm]\sqrt{\frac{d-4}{6}}$ oe as final answer	3	nfww M1 for a correct first step: $d - 4 = 6t^2$ or $d/6 = t^2 + 4/6$ oe M1 for correctly making t^2 the subject, FT their first step M1 for finding the square root of their expression for t^2	Square root symbol must extend below fraction line
	(c)		3 and 32	2	B1 each	
	(d)	(i)	2.5 oe	1	accept 5/2	
		(ii)	- 3 -2t	2	Accept $-2t - 3$ M1 for $5 - 2(t + 4)$	