Question		Answer	Marks	Part Marks and Guidance	
1	(a)	Correct sketch	1	Straight line crossing +ve x-axis and -ve y-axis	Condone freehand
	(b)	$\frac{1}{2}$ oe	2	Or M1 for evidence of numerical attempt at 'rise/run' Or SC1 for 2	$\text { eg can be implied by }-\frac{1}{2}$
	(c)	$y=\frac{1}{2} x+6$	2	Or M1 for $\frac{1}{2} x+6$, or $y=m x+6$ or $y=\frac{1}{2} x+c$	Any m except 0, any c (inc 0)
	(d)	Not parallel as $m \neq \frac{1}{2}$ Not perpendicular as $m \neq-2$ Neither	M1 M1 A1	Allow gradient not the same Allow not negative reciprocal	

| $\mathbf{2}$ | | $y=6 x-5$ oe isw | 2 | B1 for $y=a x-5$ or $y=6 x \pm b$ or $6 x-5$ | Any a or b (incl. 0) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathbf{3}$	(a)	$y=x-5, y=-3 x+5, y=\frac{1}{2} x+5$	$\mathbf{3}$	B1 for each one	
	(b)	$y=-\frac{1}{2} x+3$	$\mathbf{2}$	B1 for $y=-\frac{1}{2} x+c$ or $y=m x+3$	

4	(a)	4	1	Not 4x	Allow 4/1
	(b)	(0, -5) cao	1		
	(c)	$y=4 x$	2	B1 for $4 x, y=m x($ any $m \neq 0), y=4 x+c$ (any $c \neq 0$)	Condone $y=4 x+0$ for 2 marks And $y=m x+0$ for 1 mark
	(d)	$-\frac{1}{5} \times 4 \neq-1$	1	Or gradient should be $-\frac{1}{4}$ Not -ve reciprocal etc	Soi 'Inverse' does not mean 'reciprocal'

5	(a)	15	2	M1 for $m=\frac{145-70}{8-3}$ or better	Ignore units
	(b)	$J=15 t+25$ oe	3	B1FT for (their 15)t M1 for method to find constant term Or SC2 for (their 15)t +25 or $y=15 x+$ 25 Or SC1 for $m t+25$	Condone other variables used instead of t Ignore units

$\mathbf{6}$	(a)		Ruled line of best fit	1	Within tramlines, any length Allow not passing through (0, 0)	Overlay available If extended must stay within tramlines
	(b)	Answer in range 10-14	2	M1 for (vertical change) / (horizontal change) soi or for correct gradient but wrong form	Can be implied from a triangle drawn on line of best fit or from any 2 points eg $12 x$ etc	
	(c)	(Average) Price (per Satsuma)	1	eg They cost 11p	Allow costs in range 10-14 or FT 0 for a description of correlation	
	(d)	$y=($ their 12) $x+$ their c oe	2	B1 for $y=($ their 12) $x+$ any c	Allow correct or FT Tolerance ± 2 for $c(l o o k ~ a t ~$ extension if line does not cross $y-a x i s) ~$	

7	(a)	Ruled line drawn	1		Overlay available
	(b)	$-\frac{2}{3}$	2FT	B1 for $-\frac{8}{12}$ or $-\frac{4}{6}$ (and other correct unsimplified forms eg $-\frac{1}{1.5}$) or $\frac{2}{3}$ or -0.66 (or better) or $-\frac{2}{3} x$ isw	If wrong points plotted allow correct or FT for $\mathbf{2}$ provided non integer, otherwise max 1
	(c)	$y=-\frac{2}{3} x+8$	2FT	their m and c B1 for $y=m x+8$ or $y=-\frac{2}{3} x+c$ or $-\frac{2}{3} x+8$ or $y=-\frac{2}{3}+8$	Allow correct or FT Any m or c including 0 eg B1 for $y=m x+12$ if $(0,12)$ plotted
	(d)	$\frac{3}{2}$ or $1 \frac{1}{2}$ or 1.5 isw	1FT	- 1/(their m)	Allow other forms if correct eg $\frac{-3}{-2}$ etc 0 for $\frac{3}{2} x$ etc

$\mathbf{8}$	(a)	Correct plots and ruled line between w $=50$ and $w=260$	$\mathbf{3}$	B2 for all 5 points correct or B1 for any 2 points correct and B1 for a ruled line through at least 4 correct points	
	(b)	9.9 to 10.1	$\mathbf{1}$	or FT their straight line	accuracy: the centre of their cross, dot or top of their stick should lie within the 'circle' on the overlay
	(c)	0.02 oe	$\mathbf{2}$	$\mathbf{M 1}$ for an attempt at $\frac{\Delta L}{\Delta W}$ from their graph	equivalents include $\frac{1}{50}$ and 2% and isw any attempt to simplify their answer
(d)	$L=($ their 0.02)W + (their 10)	$\mathbf{1}$			
(e)	No data for weights that big	$\mathbf{1}$	Spring might snap, equation may be invalid for large values of W or limit to the length, etc		

$\mathbf{9}$	(a)		$(1,4.5)$	2	B1 for each coordinate	
	(b)	(i)	58	2	$\mathbf{M 1}$ for $t^{2}=9$ or $6 t^{2}=54$	
	(ii)	$[t=][\pm] \sqrt{\frac{d-4}{6}}$ oe as final answer	3	nfww M1 for a correct first step: $d-4=6 t^{2}$ or $d / 6=t^{2}+4 / 6$ oe M1 for correctly making t^{2} the subject, FT their first step M1 for finding the square root of their expression for t^{2}	Square root symbol must extend below fraction line	
	(c)		3 and 32	2	B1 each	
	(d)	(i)	2.5 oe	1	accept $5 / 2$	
	(ii)	$-3-2 t$	2	Accept $-2 t-3$ M1 for $5-2(t+4)$		

